Infrared Activity Frames for Measuring Locomotor Activity in Mice and Rats
The ActiMot3 module is designed to study voluntary activity in home cages under stress-free conditions in long-term experiments. Our infrared activity frame uses extra-fast infrared sensors for a comprehensive activity analysis in the XYZ axis. With a unique 5mm sensor spacing, it delivers unparalleled spatial resolution, ideal for mouse studies. Our software offers detailed analysis of fine and ambulatory movements, activity differentiation, and over 100 result parameters.
Explore, discover, and elevate your research like never before!
Operate under all light conditions – even in complete darkness
Unique sensor spacing of 5mm in mice (1.25mm digital resolution) – no activity is missed
Differentiate between activity & resting periods
XY level detects stationary and ambulatory movement
The Z sensor level monitors rearing and jumping
Integrated lid holder for comfortable change of cages
The ActiMot3 frames are seamlessly integrated with other PhenoMaster modules like drinking and feeding systems, running wheels, operant walls, and indirect calorimetry setups. With all cage components suspended from the lid, movement detection remains uninhibited. Additionally, the ActiMot frames can also be utilized as stand-alone systems for various behavioral tests, including Open Field, Light-Dark, and Hole-Board tests. This versatility allows for comprehensive behavioral analysis across different testing paradigms.
Regions of interest allow zone-specific analyses
Customized analysis – a variety of movement thresholds
More than 100 parameters are calculated from the raw data
Differentiate between activity and resting periods – precious in metabolic studies
Output speed, latencies, rearing, jumping and more
Detailed graphical analyses: actograms, the pattern of movement, histograms, spatial graphs
Buchenauer, L., Haange, S.-B., Bauer, M., Rolle-Kampczyk, U. E., Wagner, M., Stucke, J., Elter, E., Fink, B., Vass, M., von Bergen, M., Schulz, A., Zenclussen, A. C., Junge, K. M., Stangl, G. I., & Polte, T. (2023). Science of The Total Environment, 905, 167034.
Maity-Kumar, G., Ständer, L., DeAngelis, M., Lee, S., Molenaar, A., Becker, L., Garrett, L., Amerie, O. V., Hoelter, S. M., Wurst, W., Fuchs, H., Feuchtinger, A., Gailus-Durner, V., Garcia-Caceres, C., Othman, A. E., Brockmann, C., Schöffling, V. I., Beiser, K., Krude, H., … Müller, T. D. (2022). Molecular Metabolism, 66, 101616.
Milenkovic, D., Misic, J., Hevler, J. F., Molinié, T., Chung, I., Atanassov, I., Li, X., Filograna, R., Mesaros, A., Mourier, A., Heck, A. J. R., Hirst, J., & Larsson, N.-G. (2023). Cell Metabolism, 35(10), 1799-1813.e7.
Pham, T. C. P., Dollet, L., Ali, M. S., Raun, S. H., Møller, L. L. V., Jafari, A., Ditzel, N., Andersen, N. R., Fritzen, A. M., Gerhart-Hines, Z., Kiens, B., Suomalainen, A., Simpson, S. J., Salling Olsen, M., Kieser, A., Schjerling, P., Nieminen, A. I., Richter, E. A., Havula, E., & Sylow, L. (2023). Science Advances, 9(32), eadf7119.
Xie, K., Fuchs, H., Scifo, E., Liu, D., Aziz, A., Aguilar-Pimentel, J. A., Amarie, O. V., Becker, L., da Silva-Buttkus, P., Calzada-Wack, J., Cho, Y.-L., Deng, Y., Edwards, A. C., Garrett, L., Georgopoulou, C., Gerlini, R., Hölter, S. M., Klein-Rodewald, T., Kramer, M., … Ehninger, D. (2022). Nature Communications, 13(1), Article 1.